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Viscous dissipation in steep capillary–gravity
waves

By M I C H A E L S. L O N G U E T - H I G G I N S
Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA 92093-0402, USA

(Received 11 November 1996 and in revised form 24 March 1997)

Some simple but exact general expressions are derived for the viscous stresses required
at the surface of irrotational capillary–gravity waves of periodic or solitary type on
deep water in order to maintain them in steady motion. These expressions are applied
to nonlinear capillary waves, and to capillary–gravity waves of solitary type on deep
water. In the case of pure capillary waves some algebraic expressions are found for
the work done by the surface stresses, from which it is possible to infer the viscous
rate of decay of free, nonlinear capillary waves.

Similar calculations are carried out for capillary–gravity waves of solitary type on
deep water. It is shown that the limiting rate of decay of a solitary wave at low
amplitudes is just twice that for linear, periodic waves. This is due to the spreading
out of the wave envelope at low wave steepnesses. At large wave steepnesses the
dissipation increases by an order of magnitude, owing to the sharply increased
curvature in the wave troughs. The calculated rates of decay are in agreement with
recent observations.

1. Introduction
Most work on the theory of capillary–gravity waves on deep water has assumed

the fluid to be inviscid. With waves of very low amplitude or slope, and of sufficiently
long wavelength the assumption can be justified; as Lamb (1932) has shown, the
time-constant for the decay of low surface waves is about 0.712λ2 s, where λ denotes
the wavelength in cm. For gravity waves of length greater than a few centimetres
this linear damping is relatively unimportant, but for capillary waves, say λ < 1 cm,
the damping becomes increasingly significant as λ diminishes. Moreover, nonlinear
gravity waves with lengths between about 5 and 150 cm, which usually carry parasitic
capillary waves on their forward slopes, are subject to much higher rates of decay for
this very reason (Longuet-Higgins 1963).

Naturally occurring capillary waves, however, are frequently quite steep and nonlin-
ear, especially parasitic capillaries. The solitary capillary–gravity waves predicted by
Longuet-Higgins (1988, 1989) and confirmed by Vanden-Broeck & Dias (1992) have
been found among wind-generated surface waves in the laboratory (Zhang 1995),
sometimes with slopes approaching 45◦. What is their expected rate of decay?

The present enquiry was prompted by a recent laboratory study of deep-water
solitons (Longuet-Higgins & Zhang 1997) in which the decay of the solitons was
measured experimentally. There has apparently been no theoretical calculation with
which to compare the observations.

In contrast to shallow-water waves, where most of the dissipation comes from a
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well-understood boundary layer at the bottom, in a deep-water wave when the surface
stress vanishes and there is no meniscus, the bulk of the dissipation occurs throughout
the fluid as ‘volume dissipation’. Even the presence of a thin vortical boundary layer
does not change the total dissipation, to lowest order in kδ where k is the wavenumber
and δ the boundary-layer thickness. (The validity of the boundary-layer theory for
wavelengths down to 1 mm can be seen from table 2 of Longuet-Higgins 1992).

At first sight calculation of the volume dissipation appears to require the evaluation
of a double integral over the entire body of the fluid. But an alternative approach
was pointed out by Lamb (1932, §348) for linear waves. He argued that to maintain a
steady wave in a viscous fluid certain stresses must be applied at the surface. Morever
in a steady state the total volume dissipation would be just equal to the work done by
these virtual surface stresses against the particle motion at the surface. Using linear
theory, he was thus able to calculate the total volume dissipation and hence the free
rate of decay, to lowest order in kδ. This was done only for linear waves, but it is
evident that if we can find the surface stresses in nonlinear waves, and hence the work
done against them, we can infer the total volume dissipation in that case also, at
the expense of only one integration along the surface instead of a double integration
throughout the volume.

To estimate the decay rate of a free nonlinear wave, a further assumption is
necessary, namely that the nonlinear wave maintain its steady form approximately
while decaying under the action of viscosity – an assumption that is plausible if the
dissipation is sufficiently weak.

Such is the programme carried out in the present paper. In §2 we first derive some
very simple expressions for the stresses τnn and τns normal and tangential to the
surface in terms of the local curvature κ and particle velocity q in a reference frame
moving with the wave; see equation (2.8). It is assumed that the flow is irrotational,
to lowest order. In §3 we calculate the total rate of working against the surface
stresses (equation (3.9)). For steady waves either periodic in space or isolated as
solitary waves, the expression simplifies remarkably, giving the very simple and useful
formulae (3.10) and (3.11). The hodograph transformation which is convenient in
subsequent work, is introduced in §4, and in §5 we check the formulae by showing
how for linear waves the known rate of damping is recovered.

The first application to nonlinear waves is in §6, where the general formula (3.10)
is applied to pure capillary waves. Here Crapper’s (1957) exact solution is found to
lead directly to an explicit expression for the dissipation D which is algebraic in the
amplitude parameter A; see equation (6.16). Together with the known expressions for
the kinetic and potential energies of a Crapper wave (which also are algebraic in the
parameter A) one can easily calculate the time-rate of decay as shown in figure 4,
§7.

The second and main application of the general formulae is to solitary waves on
deep water, as described in §§8 and 9. Here we are helped by the fact that for steep
solitary waves the total energy E has already been calculated in Longuet-Higgins
(1989) and that there exists a good approximation for the wave profile enabling us
to evaluate analytically the dissipation D in steep waves (§8). On the other hand
for low waves it is known that a solitary wave behaves as a wave packet whose
width spreads out in inverse proportion to the wave amplitude (see Longuet-Higgins
1993; Akylas 1993). This enables us to provide satisfactory asymptotes to D and E
at low wave amplitudes. As a result we can construct a theoretical curve for the time
history of a decaying solitary wave (figure 8.). Noteworthy is the fact that at low
steepnesses the maximum surface slope in a solitary wave decays at twice the rate for
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Figure 1. Definition of coordinates in the frame of reference moving with the phase speed c.

a linear, periodic wave. This is because the reduced energy has to be spread over an
ever-widening horizontal distance.

In §10 the theory is compared with laboratory measurements and found to be in
good agreement. A statement of the conclusions follows in §11.

2. Surface stresses: general equations
Consider a uniform, incompressible fluid in steady, two-dimensional irrotational

motion, as in figure 1. Denote by s the distance along the surface from a fixed point
O to a variable point P on the surface, and n the distance normal to the surface
from P to an arbitrary point Q in the plane of motion. Oξ and Oη and are fixed
rectangular axes at O, and θ denotes the angle between Oξ and the tangent at P . Let
q denote the particle velocity at P . Then the components (u, v) of the velocity in the
fixed directions (Oξ, Oη) are given by

u = q cos θ, v = q sin θ. (2.1)

The normal and tangential components of stress at O are given by

τnn = −p+ 2µ
∂v

∂η
, τns = µ

(
∂u

∂η
+
∂v

∂ξ

)
, (2.2)

where p is the mean pressure and µ is the coefficient of viscosity (see Lamb 1932,
§326). At the free surface we shall suppose p = −Tκ where κ is the local curvature
and T the surface tension. Also since the flow is non-divergent and irrotational

∂u

∂ξ
+
∂v

∂η
= 0,

∂u

∂η
− ∂v

∂ξ
= 0. (2.3)

Hence we have

τnn = Tκ− 2µ
∂u

∂ξ
, τns = 2µ

∂v

∂ξ
, (2.4)

where

∂

∂ξ
= cos θ

∂

∂s
+ sin θ

∂

∂n
. (2.5)
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Figure 2. Definition of velocity vectors in the stationary frame of reference.

On substituting for u and v from equation (2.1) and carrying out the differentiation,
then setting θ = 0, we have

∂u

∂ξ
=

∂

∂s
(q cos θ) =

∂q

∂s
,

∂v

∂ξ
=

∂

∂s
(q sin θ) = q

∂θ

∂s
= κq (2.6)

since

κ =
∂θ

∂s
. (2.7)

Hence finally from (2.4)

τnn = Tκ− 2µ
∂q

∂s
, τns = 2µκq. (2.8)

These equations express the stresses in terms of the local velocity q and the local
geometry of the surface, and so are valid at all points. However q must be the velocity
in a reference frame in which the flow is steady.

3. Work done against surface stresses
Consider any steady surface wave travelling to the left with speed c, as in figure

2. Let U and V denote the horizontal and vertical components of velocity, in this
(stationary) surface frame. These are related to the steady velocity q seen in a frame
moving with speed c to the left by

U = q cos α− c, V = q sin α, (3.1)

where α is the local angle between the surface and the horizontal. Now in the
stationary reference frame the local components of velocity tangential and normal to
the surface are given by

Qs = U cos α+ V sin α, Qn = −U sin α+ V cos α, (3.2)

or on substitution from (3.1)

Qs = q − c cos α, Qn = c sin α. (3.3)

Hence the rate of working W of these velocities against the surface stresses, which is
given by

W = Qnτnn + Qsτns, (3.4)

becomes

W = 2µκq2 + cTκ sin α− 2µc

(
∂q

∂s
sin α+ κq cos α

)
(3.5)
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per unit distance s along the surface. Now since κ = ∂α/∂s the second term can be
written as

− ∂

∂s
(cT cos α) (3.6)

while the two bracketed terms in (3.5) can be written

∂

∂s
(q sin α). (3.7)

Therefore if we define

D =

∫ s2

s1

Wds (3.8)

as the total rate of working against the surface stresses we find from (3.5)

D =

∫ s2

s1

2µκq2ds− c[T cos α+ 2µq sin α]2
1. (3.9)

Two special cases of this result are of particular interest. The first is when the
surface waves are periodic in the x-direction. Then if the integration is taken over
an integral number of wavelengths the last two terms of equation (3.5) vanish by the
periodicity and we obtain

D = 2µ

∫ s2

s1

κq2ds. (3.10)

Consider the mass of fluid contained between two vertical planes x = constant spaced
one wavelength apart. The net rate of working on the fluid by stresses across the
vertical boundaries is zero, by the periodicity. The work done at infinite depth is
negligible, since the motion vanishes exponentially. Therefore the only work done is
represented by equation (3.10), and in a steady state D must be equal to the total rate
of dissipation of energy in the fluid.

The second case of interest is when the motion is a progressive solitary wave. Then
if s1 and s2 are taken as −∞ and ∞ respectively, the same terms also vanish and we
obtain

D = 2µ

∫ ∞
−∞
κq2ds. (3.11)

Now in a solitary wave, the fluid velocity vanishes like 1/r2 as the distance r =
(x2 + y2)1/2 tends to infinity (see Longuet-Higgins 1989). Hence the work done by the
stresses at infinity is negligible, and D, as given by equation (3.11), must be equal to
the total rate of dissipation throughout the fluid.

It is interesting to compare equation (3.10) with an integral expression for the
dissipation given by Lamb (1932, §329 (13)) namely

D = µ

∫
∂q2

∂n
ds (3.12)

where n denotes distance normal to the surface. This can easily be derived from
equation (3.10) by noting that in an irrotational flow the normal to a streamline
is locally an equipotential surface. Thus if we have two adjacent streamlines φ and
φ+ dφ, then

0 =
∂

∂n
(dφ) =

∂

∂n
(qds) =

∂q

∂n
ds− qκds (3.13)

since ∂(ds)/∂n = −κds. Hence κq = ∂q/∂n, yielding (3.12). On the other hand
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equation (3.10) is more advantageous for calculations, since it relates the dissipation
to quantities evaluated at the free surface, rather than to a normal derivative.

4. Hodograph transformation
It is often convenient to introduce the variable

β = ln(q/c) (4.1)

so that

q = ceβ (4.2)

and

(U + c)− iV = ceβ−iα. (4.3)

Thus (α + iβ) is an analytic function of the velocity potential w = φ + iψ. Since
dφ/ds = q we have also

κ =
dα

ds
= q

dα

dφ
= ceβ

dα

dφ
. (4.4)

Hence ∫
κq2ds =

∫
q2dα = c2

∫
e2βdα (4.5)

and from §3

D = 2µc2

∫
e2βdα. (4.6)

For periodic waves, since
∫

dα = 0 over one wavelength we have also

D = 2µc2

∫
(e2β − 1)dα. (4.7)

5. Linear surface waves
We may check the above analysis against the well-known linear theory of damped

surface waves (e.g. Lamb 1932, §348). For a given surface elevation

η = a cos k(x+ ct) (5.1)

we have

α = ηx = −ak sin k(x+ ct) (5.2)

Also

φ = cx− aceky sin k(x+ ct). (5.3)

and hence at the surface

q2 = φ2
x + φ2

y = c2(1− 2ak cos k(x+ ct)) (5.4)

to first order in ak, so

β = −ak cos k(x+ ct). (5.5)

For linear waves, equation (4.7) reduces to

D = 4µc2

∫
βdα (5.6)
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where the integral is to be taken over one wavelength L = 2π/k. This gives

D = 2Lµc2a2k3 = 4πµc2a2k2 (5.7)

for the total rate of dissipation. The mean rate of dissipation D′ per unit horizontal
distance is given by

D′ = D/L = 2µc2a2k3. (5.8)

But the mean energy per unit horizontal distance is

E = 1
2
a2(g + Tk2) = 1

2
a2c2k (5.9)

(the density being taken as unity). Thus

D′

E
= 4νk2 (5.10)

where ν is the kinematic viscosity, and

1

a

da

dt
=

1

2E

dE

dt
= − D

′

2E
= −2νk2 (5.11)

as in Lamb (1932, p. 624).

6. Nonlinear capillary waves
The formulae of §§2–4 being fully applicable to nonlinear waves, we shall now

apply them to the exact solution for pure capillary waves found by Crapper (1957).
If we choose units of length and time so that the phase speed c and wavenumber

k are 1 and 2 respectively, Crapper’s solution can be written

z = w − tanw (6.1)

where z = x+iy and w = φ+iψ, in a reference frame moving to the left with velocity
−c. Any streamline ψ = ψ0 is a line of constant pressure and may be chosen as the
free surface, so that we have a family of waves specified by the parameter

A = e−2ψ0 (6.2)

in the range 0 < A < 0.4547, that is ∞ > ψ0 > 0.3941. The maximum angle of slope
of the free surface is related to A by

αmax = 4 tan−1 A (6.3)

(see the Appendix) and the phase speed c is given by

c2 =
1− A2

1 + A2
Tk. (6.4)

The potential and kinetic energies per horizontal distance are found to be

PE =
4A2

1− A2
T , KE =

4A2

1− A4
T (6.5)

(see Hogan 1979) so the total energy density is

E =
4A2(2 + A2)

1− A4
T . (6.6)
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Our task is to evaluate the surface integral

D

2µ
=

∫
κq2ds =

∫
κqdφ, (6.7)

the integral being taken over one wavelength L, for example 0 < φ < π. Note that
from the boundary condition

1
2
q2 − Tκ = constant = 1

2
(6.8)

we have

q2 = 1 + 2Tκ (6.9)

and so from (6.7)

D

2µ
=

∫
(κ+ 2Tκ2)ds = 2T

∫
κ2ds (6.10)

since
∫
κds vanishes by the periodicity. However it is easier to apply (6.7) directly.

Now from equation (6.1) we have

dz

dw
= 1− sec2 w = − tan2 w (6.11)

and so

q =

∣∣∣∣dwdz
∣∣∣∣ = cotw cotw∗ (6.12)

where a star denotes the complex conjugate. The surface curvature κ is given by

κ =
cos 2φ sinh 2ψ0

sin2 w sin2 w∗
(6.13)

(Longuet-Higgins 1988). Hence writing ζ = e2iφ we have

κq = 4A(1− A2)
ζ(ζ2 + 1)(Aζ + 1)(A+ ζ)

(Aζ − 1)3(A− ζ)3
. (6.14)

Since dφ = dζ/(2iζ) equation (6.7) becomes

D

2µ
= 2iA(1− A2)

∮
(ζ2 + 1)(Aζ + 1)(A+ ζ)

(Aζ − 1)3(ζ − A)3
dζ, (6.15)

the integral being taken round the circle |z| = 1. Since |A| < 1 the integrand has just
one pole within the unit circle, namely at ζ = A, and on taking 2πi times the residue
at this point† we obtain

D

µc2
= 64π

A6 + 4A4 + A2

(1− A2)4
(6.16)

since c2 = 1. Each side is now dimensionless. But λ = 2π/k, so we may use equation
(6.4) to write the mean dissipation D′ = D/λ as

D′ = 32
A6 + 4A4 + A2

(1 + A2)(1− A2)3
µk2T . (6.17)

The above result will be found, at length, to agree with an expression for the mean
dissipation derived by Crapper (1970, equation (21)) after allowing for a change in

† That is, on replacing ζ by (A + ε) in the integrand, expanding in powers of ε, and taking 2πi
times the coefficient of ε−1.
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Figure 3. The scaled rate of dissipation D′ and the energy density E for capillary waves as
functions of the parameter αmax.

notation. Crapper’s derivation was based on Lamb’s expression for D, equation (3.12)
above.

Note that when A � 1 equation (6.17) reduces to

D′
.

= 32A2µk2T . (6.18)

But from (6.6) the total energy density E is

E
.

= 8A2T (6.19)

in the limit. Hence

D′/E
.

= 4νk2 (6.20)

in agreement with equation (5.10).
In figure 3 the scaled rate of dissipation D′/4µk2T is plotted against αmax (see

equation (6.3)). The scaled energy density E/T is shown for comparison. It will be
seen that for low values of αmax the two curves touch, but at high values of αmax the
dissipation increases much more rapidly than the energy density. This behaviour will
be further discussed in §10.

7. Viscous decay of a free wave
To follow the evolution of a surface wave which is free to decay on its own by

viscous dissipation it is plausible to assume that, if the rate of decay is sufficiently
slow, the wave motion at any given time is approximately that of a steady wave of the
same amplitude. With linear sinusoidal waves, this can be easily justified. However if
the waves are nonlinear, the validity of the assumption is less clear. Indeed it cannot
possibly be exactly true, as we can show. For, consider a uniform irrotational wave
train of finite amplitude a. This is associated with a horizontal momentum

M = E/c
.

= 1
2
a2kc (7.1)
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per unit distance. As the amplitude decays, this momentum is converted into a surface
current, the vorticity so generated being diffused downwards from the free surface
as described in Longuet-Higgins (1969). The depth to which the current penetrates
is of order (νt)1/2, where t denotes the elapsed time since the wave began to decay.
Hence the time take for the vorticity to penetrate to a depth of order k−1 is of
order 1/(νk2), which is comparable to the natural decay time of the waves. Thus
when the wave has reached some lower amplitude a′ less than the starting amplitude
a, it is propagated on a shearing current – the remnant of part of the momentum
from the original wave. Hence the wave is no longer irrotational as assumed in our
analysis.

The coupling between a surface wave and a second-order shearing current is,
however, weak, as was shown by Dubreil-Jacotin (1934).

In addition we must bear in mind that the viscous boundary layer at the free
surface is not of uniform thickness (see Longuet-Higgins 1969, 1992). Consequently,
there are additional normal stresses on the fluid in the interior which could result in
the generation of higher harmonics in the potential flow as the wave decays. Possibly
these can be accommodated in a quasi-steady solution, but this is a question for
future investigation.

In spite of these remarks it is nevertheless legitimate to assume as an approximation
that in slowly decaying waves, at least, the wave is in a quasi-steady state which is
given approximately by the irrotational solution described in §6.

Accordingly we assume here that, in a freely decaying wave of uniform amplitude,

dE

dt
= −D′ (7.2)

where E and D′ refer to the irrotational solutions. From (7.2) it follows that

t = −
∫

dE

D′
. (7.3)

In pure capillary waves, for example, we have on substitution from equations (6.6)
and (6.17)

νk2t =
1

8

∫ A0

A

(1 + A2)(1− A2)3

A6 + 4A4 + A2
d

(
2A2 + A4

1− A4

)
(7.4)

where A0 denotes the values of A at the starting time t = 0. This can be simplified to

νk2t =
1

2

∫ A0

A

1− A6

1 + 5A2 + 5A4 + A6

dA

A
. (7.5)

The above integral may easily be evaluated numerically to give A as a function of
t. In figure 4(a) the maximum slope αmax (see equation (6.3)) is plotted as a function
of the dimensionless time νk2t). From figure 4(b), which shows the logarithm of αmax
plotted similarly, it can be seen that the proportional rate of decay of αmax is in this
case nearly a constant over the whole range. We may say that the sharp rate of
increase in the dissipation D at high wave slopes has been partly compensated by the
rapid increase in the energy density E.

As pointed out by a referee, the integral in equation (7.5) can also be evaluated by
partial fractions to yield

νk2t = 1
8

ln
(1 + 4A2 + A4)3

(1 + A2)2A4
− C (7.6)
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Figure 4. Time-history of the maximum surface slope in pure capillary waves decaying under
viscosity. (a) αmax, (b) ln αmax.

where C is a constant of integration. Choosing t = 0 when A = 0.4547 (see §6) gives
us

C = 0.5818. (7.7)

Let α = 1
2
αmax, so that A = tan 1

2
α by equation (6.3). Then equation (7.6) can be

written in the form

e8νk2t =
2γ4(2 + sin2 α)3

sin4 α
(7.8)

where γ = e−2C = 0.3124. Being effectively a cubic equation for sin2 α in terms of
exp(8νk2t), equation (7.8) may be solved explicitly for sin2 α, giving αmax as a function
of the time t. The result agrees with figure 4(a).

When α is small equation (7.8) yields, to a first approximation,

sin α = 2γe−2νk2t. (7.9)



282 M. S. Longuet-Higgins

2

0

(a) C = 0.9276

(b) C = 1.0
2

0

(c) C = 1.12

0

0

2
(d) C = 1.2 (gT)1/4

–4 –2 0 2 4

(T/g)1/2x

(T
/g

)1/
2 y

Figure 5. Approximate profiles of steep solitary waves as given by equation (8.2). C denotes the
normalized phase speed c/(gT )1/4. For maximum slopes, see table 1.

Hence

αmax = γe−2νk2t, (7.10)

which is in agreement with equation (5.11) and yields in addition the constant of
proportionality.

8. Solitary waves on deep water
We shall now apply the general formulae of §4 to capillary–gravity solitary waves

on deep water (see Longuet-Higgins 1989, 1992). For these waves there are no exact
expressions as for pure capillary waves, but good approximations have been shown
to exist in two cases: very steep solitary waves (Longuet-Higgins 1989), and solitary
waves of very small steepness (Longuet-Higgins 1993; Akylas 1993). In both cases we
can derive (approximate) closed expressions for the energy dissipation.

It is convenient in this Section to take units of length and time so that

g = 1, T = 1. (8.1)

For very steep waves, that is to say with a maximum slope exceeding about 45◦, an
approximation to the particle velocity at the free surface (relative to a frame moving
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αmax

c (rad.) (deg.) PE KE E D/µ q0

0.9276 1.712 98.1 2.066 1.294 3.360 549.8 11.83
0.950 1.652 94.7 2.004 1.294 3.298 451.2 10.83
1.000 1.514 87.7 1.853 1.275 3.128 289.4 8.90
1.050 1.371 78.6 1.681 1.225 2.906 184.2 7.34
1.100 1.224 70.1 1.489 1.143 2.632 116.3 6.08
1.150 1.072 61.4 1.280 1.031 2.311 71.7 5.03
1.200 0.917 52.5 1.056 0.890 1.946 42.8 4.17
1.414 0.000 00.0 0.000 0.000 0.000 00.0 1.00

Table 1. Parameters for a solitary wave on deep water.

with speed c to the left) is given by the simple expressions

α = B
2λ

(1 + λ2)2
, β = B

1− λ2

(1 + λ2)2
(8.2)

where B is a parameter and λ = φ/c; see Longuet-Higgins (1989, equation (4.2)).
From these and from the Bernoulli relation

y = − 1
2
q2 + Tκ+ const. (8.3)

we may plot the profile of the free surface for a given value of the parameter B; see
figure 5. From (8.2) it can be seen that for each value of B the surface slope α has a
maximum value when λ2 = 1/3, giving

αmax =

√
27

8
B = 0.6495. (8.4)

In the limiting case B = 2.637, corresponding to αmax = 98.1◦, the surface bends over
and encloses a ‘bubble of air’ , as in a pure capillary wave of maximum steepness (see
§5). The phase speed of this wave is c = 0.9276 (gT )1/4, see table 1. In general the
surface profiles of the waves in figure 5, up to about c = 1.2, αmax = 43.6◦, B = 1.172,
closely resemble the exact profiles shown in figure 3 of Longuet-Higgins (1989). The
chief discrepancy is in the outer parts of the waves, where the exact profiles approach
the level at infinity from slightly above whereas in figure 5 they approach from slightly
below. However, the curvature being small in these parts of the wave, the estimated
dissipation is only very slightly affected.

On substituting in the general formula (4.7) we find for the total energy dissipation

D = 2µc2F(B) (8.5)

where

F(B) = 2B

∫ ∞
−∞

1− 3λ2

(1 + λ2)3

[
exp

{
2B(1− λ2)

(1 + λ2)2

}
− 1

]
dλ, (8.6)

It is straightforward to evaluate the integral numerically. As a useful check we have
when B � 1

F(B) ∼ 4B2

∫ ∞
−∞

(1− 3λ2)(1− λ2)

(1 + λ2)5
dλ =

3π

4
B2. (8.7)

In equation (8.5) the phase speed c is also a function of αmax; see table 1. Using the
precisely calculated values of B given by equation (8.4) and table 1 we have plotted
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Figure 6. Rate of viscous dissipation of energy in a solitary wave as a function of the maximum
slope αmax (measured in degrees). Curves with crosses: from equation (8.6). Curves with circles:
computed from equation (3.11) using the accurate numerical solution given in Longuet-Higgins
(1989). Dashed line: asymptote from equation (9.9).
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Figure 7. Total energy E of a solitary wave as a function of the maximum surface slope αmax. Plotted
points: computed values from Longuet-Higgins (1989). Dashed line: asymptote from equation (9.7).

in figure 6 the function D/µ against αmax (upper curve). It will be seen that there is
an extremely sharp increase in D towards the higher values of αmax.

To verify this sharp increase, we resort to the exact numerical calculation of
solitary wave profiles given in Longuet-Higgins (1989) and evaluate the integral (3.11)
numerically. The results are shown in table 1 and by the lower curve (plotted with
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circles) in figure 6. It will be seen that the trends of the two curves are similar.
Proportionally they differ by 25% to 40%.

The straight dashed line in the lower part of figure 6 represents an asymptote which
will be derived below in §9.

For comparison we show in figure 7 the total energy E as a function of αmax
which was calculated numerically in Longuet-Higgins (1989). The values used are
shown in table 1. The values are considered accurate down to αmax = 52◦. The dashed
curve in figure 7 represents an asymptote for low values of αmax which will now be
derived.

9. Solitary waves: the low-amplitude limit
It has been shown (Longuet-Higgins 1993; Akylas 1993) that in the limit of low

wave steepness a solitary capillary gravity wave on deep water takes the form of a
wave packet in which the surface elevation η is given to order ε3 by

η =
2εaω

g + Tk2
cos(kx+ ωt− ε2t) sech [bε(x+ cgt)] (9.1)

where k and ω are the wavenumber and frequency of the carrier wave. Also

a2 = 16
11
ω, b2 = 2ω (9.2)

and cg denotes the group velocity. Thus, as the amplitude parameter ε diminishes,
the width of the envelope increases as ε−1. The waves are steady with respect to the
envelope if c = cg which implies k = 1, ω =

√
2, in units where g = T = 1. Hence

to lowest order in ε equation (9.1) can be written

η =
√

2aε cos x sech(bεx) (9.3)

at time t = 0, and

αmax =
√

2 aε =
4× 23/4

√
11

ε. (9.4)

The total energy E is given by

E =
1

2

( g
k2

+ T
)
α2
max

∫ ∞
−∞

sech2(bεx)dx. (9.5)

to lowest order, that is

E =
2α2

max

bε
=

4a2ε2

bε
=

32× 23/4

11
ε (9.6)

or from equation (9.4)

E =
8√
11

αmax = 2.412 αmax. (9.7)

It is notable that E is proportional to αmax and not α2
max.

As in the linear theory (§5) the total dissipation D is given by

D = 4νk2E (9.8)

to lowest order in ε, that is to say

D =
32√
11
νk2αmax = 9.648 ναmax. (9.9)
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The two asymptotes (9.7) and (9.9) are shown by the dashed lines on figures 7 and 6
respectively.

From the relation
dE

dt
= −D = −4νk2E (9.10)

we then obtain

t = − 1

4νk2

∫
dE

E
= − 1

4νk2

∫
dαmax
αmax

(9.11)

and hence

αmax ∝ e−4νk2t. (9.12)

In other words, the wave steepness in a low-amplitude solitary wave decays approxi-
mately twice as fast as in an infinite train of linear periodic waves. Evidently this is
because, as the maximum steepness decays, the width of the solitary wave envelope
increases, so that the decreasing total energy has to be distributed over a greater
horizontal distance.

10. Discussion and comparison with experiment
The salient feature of figure 8 is the very sharp initial decreases in the surface

slope αmax, compared with the initial decrease for the pure capillary wave, as shown
in figure 4. To understand this, we may first compare the rates of dissipation D for
the two types of wave. The plots of D′ and D in figures 3 and 6 cannot be compared
directly since the physical scales are different. However, it is legitimate to compare the
dimensionless quantities D/µq2

0 where q0 denotes the value of q in the central wave
trough (φ = 0). For the pure capillary waves of §6 we have from equation (6.12)

q0 =

(
1 + A

1− A

)2

c (10.1)

and so from (6.16)

D

µq2
0

= 64π
A6 + 4A4 + A2

(1 + A)8
(10.2)

where A = tan(αmax/4). For the solitary waves D/µq2
0 can easily be found from the

values of D/µ and q0 given in table 1.
The numerical results are shown in figure 9, from which it is seen that the two curves

follow one another very closely. This suggests that the sharp increase in dissipation at
large αmax is due in each case to the same cause, namely the large velocity gradients
occurring in the troughs of each wave. In the wave troughs, q is large and the radius
of curvature κ−1 is very small.

Note that since κ = dα/ds equation (3.11), for example, can be written

D

µc2
= 2

∫ ∞
−∞

(q2/c2)dα. (10.3)

For very steep waves, the angle of slope α goes rapidly from −π/2 to +π/2. Thus
the contribution to D/µc2 from the neighbourhood of the trough is of order 2πq2

0/c
2,

which can become very large. In the rest of the integral where dα is negative, the
velocity q is much smaller, and so also is the contribution to the integral (10.3).

However the rate of decay of αmax with time depends also on the energy density
E, through its derivative dE/dαmax. Here we can see obvious differences between the
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Figure 8. Time history of the maximum surface slope of a solitary wave decaying under viscosity.
Curve: this paper; plotted points: experimental data (Longuet-Higgins & Zhang 1997).
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Figure 9. Comparison of the scaled dissipation D/µq2
0 in a solitary surface wave (plotted points)

and in one wavelength of a pure capillary wave (dashed curve) as a function of the maximum
surface slope αmax.

solitary wave and the pure capillary wave. For the pure capillary wave E increases
sharply at high values of αmax (see figure 3). But for the solitary wave E increases only
linearly (figure 7) and at high values of αmax its rate of increase actually decreases.
Physically this is because the gravitational part of the potential energy levels off
and even decreases slightly as shown in figure 8 of Longuet-Higgins (1989). Again,
this is due to the horizontal contraction of the solitary wave at high values of αmax.
Consequently the rate of decay of the solitary wave is much greater.
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Finally in figure 8 we have plotted some experimental points representing the
measured steepness of a freely decaying solitary wave as a function of the time t. In
these experiments a solitary wave was excited by locally disturbing a uniform stream.
The disturbance was then removed, and the solitary wave allowed to decay freely.
For details, see Longuet-Higgins & Zhang (1997).

11. Conclusions
We have calculated the rates of viscous dissipation in two types of short surface

waves: pure capillary waves and capillary gravity waves of solitary type on deep
water. Both types of wave are assumed irrotational in the main body of the fluid,
though not in surface boundary layers. In the pure capillary waves one can derive
exact expressions for the energy dissipation, and hence for the instantaneous rate
of decay of the wave amplitude. In the course of the decay, some vorticity will be
spread from the surface boundary layer to the interior of the fluid. This vorticity is
of second order in the wave steepness αmax and if its interaction with the potential
flow is neglected we may calculate the time history of the wave steepness as the wave
decays. The result suggests that the steepness of pure capillary waves decreases at a
nearly constant rate, over the whole range of wave amplitudes.

Similar calculations have been carried out for capillary gravity waves of solitary
type. Here the methods used are essentially numerical, not analytic, but approximate
formulae are available in two situations: when the surface slopes are very steep, and
when they are small. When they are very steep, the numerical calculations, checked
by the approximate formulae, indicate that at large values of the surface slope the
dissipation increases very sharply, resulting in an exceptionally high rate of initial
decay at large wave steepness.

When the solitary waves are low, they become essentially solitary wave ‘packets’
whose horizontal extent is inversely proportional to their maximum slope. Hence the
limiting rate of decay of αmax can be shown to be exactly twice that in an infinitely
long wave of infinitesimal slope and comparable wavelength.

The theoretical rates of decay of solitary waves are in agreement with experiments
on artificially generated solitary waves in the laboratory, at steepnesses αmax less
than 50◦ (see Longuet-Higgins & Zhang 1997). The very high theoretical rates of
dissipation at larger values of αmax may partly explain why very steep solitary waves
are difficult to generate artificially.

This work has been supported by the US National Science Foundation under Grant
OCE 93-14308 and the US Office of Naval Research under Contract N00014-94-1-
0008.

Appendix. Proof of equation (6.3)
Since in §6 the flow is to the right we have α = arg dz/dφ and so from equation

(6.11)

(π − α) = arg (tan2 w) = 2 arg (tanw). (A 1)

But

tanw = tan (φ+ iψ) =
tanφ+ iτ

1− iτ tan φ
(A 2)
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where

τ = tanhψ =
1− A
1 + A

. (A 3)

From (A2)

arg(tanw) = tan−1(τ cotφ) + tan−1(τ tanφ)

= tan−1 τ(cotφ+ tanφ)

1− τ2

= tan−1

(
2τ

1− τ2
cosec2φ

)
. (A 4)

This has a minimum when φ = π/4 and cosec 2φ = 1. Hence

(π − αmax) = 2 tan−1

(
2τ

1− τ2

)
= 4 tan−1 τ. (A 5)

Substituting from (A3) we have

(αmax − π) = 4 tan−1 A− 1

A+ 1
= 4[tan−1 A− tan−1(1)] = 4(tan−1 A− 1

4
π). (A 6)

This proves equation (6.3).
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